OFFICE OF THE SUPERINTENDENT OF SCHOOLS
Peterborough, New Hampshire

CONTOOCOOK VALLEY SCHOOL BOARD

Strategic Plan Committee
SAU Office/Boardroom

Thursday, April 13, 2017
7:00 p.m.

MINUTES

School Board Committee Members:
¢ Pierce Rigrod

Richard Dunning

Bernd Foecking

Jim Fredrickson

Kristen Reilly

Committee Members Present: Pierce Rigrod, Richard Dunning, Jim Fredrickson, Kristen Reilly

Others Present: Riley Young, John Jordan (SAC), Bob Edwards, Stephan Morrissey, Kimberly Saunders
(7:20), Ann Forrest (7:22), Rich Cahoon (7:34), Myron Steere (7:34)

Pierce Rigrod called the meeting to order at 7:02 p.m.

1. Approval of Minutes from March 9, 2017
Dick Dunning moved to accept the minutes of March 9, 2017. Pierce Rigrod second. Kristen
abstained.

2. Election of Committee Chair
Dick Dunning recommended that Pierce Rigrod continue as Chair. Second. Unanimous.

3. Strategic Plan — Implementation (SAU/Board)

Pierce Rigrod spoke about Summer Program and the progress being made. The numbers of students taking
summer program to catch up to extending learning has grown. Progress is underway in terms of discussion on
the high school renovation.

Dick Dunning reported out on a meeting with Hutter Construction. The agenda is to go back to the high school
to discuss the vision for the labs and the renovations to the core structure. The expenditure will be looked at.
The hope is to use revenue that we have to attack that and not have to bond. The goal is to have this in line
for a decision prior to July 1*. Realistic figures need development so decisions can be made. The first priority
is renovation of the science labs.

The district started the OGAP program to strengthen math. It was a big investment. SWIFT is also in process;
it involves inclusion. In addition, the Education Equity Report is underway by Ann Forrest. The technology
plan is moving forward.

The Strategic Plan is a roadmap that we are on.

4. Configuration Models — Model Weights & Companion Reports (SAU)

Four models; things that we could different that would be better in a number of ways.

Reconfiguration — K-8, soft borders (go to school closest to where you live), close schools (reducing the
number of buildings), and status quo.

Status Quo - based on birth rates, what will the district look like five years from now?

Reconfiguration — use the buildings we have now; how could it look different? Potential Pre-K/1 centers. What
would it cost? Could it save us?



Consolidation - closing a school or schools. Could we offer foreign languages? Could we offer 1:1
experiences? Universal Preschool? What could we do that we can't now if we consolidated?
Nothing is off the table until it doesn't make sense for who we are.

Administration will make a recommendation with each report.

The expectation is that information for Board review should be ready by the end of June.

Ultimately the board will make the decision on what they want to move forward.

Weights and Measures — Deciding how it should be weighted and what will be weighted needs determination
ahead of time.

A normative process might be considered in terms of what is important to people; what do they value?

Trend data might be a place to start.

Jim Fredrickson will work on criteria for the next meeting. A sample matrix will come forward.

Each board sub-committee should be given deadlines for information to get the work done.

5. Facilitation of Models Discussion (timeline)

Companion reports will come in June. The board will decide which models to pursue in public. Facilitation
would follow to work through the hard parts and arrive at consensus. Information will be shared with the public.
The board needs to identify priorities i.e. shorten transportation time for students.

Kimberly Saunders will facilitate the discussion that will inform the work. Jim Fredrickson and Kimberly will
share at the May retreat. From there, options go into the matrix, then out to the community for sharing.
Gaining community input on what is important.

Do not inject public process to affect criteria. Develop criteria internally. Confirmed.

Important factors — education, transportation, facility cost, and staffing cost.

6. Financial Equity Study (distribution & comment through May)

The Financial Equity Study report has been distributed minimally.

An Executive Summary was suggested along with tables for public consumption.

Baseline information using State calculations and other information was suggested. What would it look like for
each town for comparison?

A Peer Review Letter should be included in the report.

Town by town impact should be considered.

7. Policies Related to Strategic Planning

(Multi-Age, attending school other than assigned school (status))
Multi-age and Multi-grade is still with the Education Committee. What are the educational opportunities?
Policy JCA is used on a regular basis. There is no solid reason to change the policy to attend a school other
than assigned.
Are there other policies that need review? Not at this point.

8. Other
Kristen Reilly will serve as the Strategic Plan Committee rep to the Communications Committee.

Dick Dunning motioned to adjourn at 8:15 p.m. Second. Unanimous.

Respectfully submitted,

Brenda Marschok
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Weighted Criteria Matrix

Description

The weighted criteria matrix is a valuable decision-making tool that is used to
evaluate program alternatives based on specific evaluation criteria weighted
by importance. By evaluating alternatives based on their performance with
respect to individual criteria, a value for the alternative can be identified.

The values for each alternative can then be compared to create a rank order of
their performance related to the criteria as a whole. The tool is important
because it treats the criteria independently, helping avoid the over-influence

or emphasis on specific individual criteria.

The matrix itself is constructed with the alternatives listed along one side and
the review criteria along the other. A box to insert the specific assigned
weight is located with each criteria. An evaluation scale is established for the
whole matrix. The ranking of the alternative based on its ability to address
the specific criteria is entered into the appropriate cell. The total scores are

then available to use in ranking alternatives.

Why Use Weighted Criteria Matrix to Develop and Review Workplace
Solutions?

* The weighted criteria matrix is just one means of evaluating proposed
workplace strategies. Often, rather than not having enough ideas for the
strategies, organizations find themselves with too many. The weighted
criteria matrix can help organizations narrow the list of options using
criteria such as cost against other criteria such as quality or efficiency.

How Else Can It Be Used?

* Use the weighted criteria matrix whenever a decision or series of decisions

are necessary in an IWS project.



* Managing Change: It can also be used to help resolve conflicts during the
change management stage of an IWS project, and in the establishment of

initial project goals.

Who to Involve

* All project team members should be involved in the development of a
weighted criteria matrix.

* When decisions will affect user groups, representatives of those groups
should have input to the weighted criteria matrix process.

Source: Adapted from Joe Ouye, Facility Technics Facility Management
Consulting, 505 17th Street, Suite 300, Oakland, CA 94612. Adapted by
permission.



1

3

4

5

Sample: Weighted Criteria Matrix

Criterion Criterion 1 Criterion 2 Criterion 3 Criterion 4 TOTAL
Cost effectivensss for Div Con sfiectiveness for Co Employes satisfaction Flexibility for Divs
Weight 4 4 1 3 SCORE
ALTERNATIVE Raw Score Wid Score Raw Scorc Wid Score Raw Scorc ‘Wid Scorc Raw Score Wid Scorc
Status Quo (incl same cost allocation scheme) 0 o 4 4 0 4
2 ' Keep all Divisions in the same hub office, with private offices 1 4 1 4 4 4 1 3 15
Kocp all Divisions in the same hub office, with office-sharing 2 s 2 8 ) 3 1 3 2
(2 salespeople to 1 office) 2
Keep all Divisions in the same hub office, with hoteling (3 3 12 3 12 2 2 3 9 35
salespeople to 1 office)
All Divisions to work out of Executive Suites 2 8 2 8 3 3 4 12 31
0
Coat clfectivencss for Div Cost cffcctiveness for Co satisfaction Flexibility for Divs
{0 Low Low 10 Low 0 Low
2 Medium 2 Medium lﬁ Modium 12 Medium

Source: Joe Ouye, Facility Technics Facility Management Consulting, 505 17th
Street, Suite 300, Oakland, CA 94612. Used by permission.
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1. Introduction

In practice, there are many situations for which the aggregate performance of a group of alternatives must be evaluated
based on a set of criteria, The alternative with the best aggregate performance is chosen for implementation. The associated
research falls into the category of multiple criteria decision analysis (MCDA).

Numerous MCDA methods for ranking alternatives have been developed [1-3]. The essence of each method is the way
that the performances of the selected criteria are aggregated. The study of Eckenrode [4] is a classic work on this topic. Later
developments include the partial utility function [5], the analytic hierarchy process [6,7], ordinal regression [8], and the cen-
troid method [9]. Once the importance of each criterion is decided, the aggregate scores are calculated and the rankings are
determined.

Following this procedure, the most critical step is determining the importance of each criterion. Fundamentally, there are
two ways of eliciting the weights of criterion importance: direct explication and indirect explication [10]. Direct explication
refers to eliciting weights through expert interviews, questionnaire surveys, and conventional rules, where weights are
determined before the data of each alternative is collected. They are called a priori weights. Since the weights show the
emphases of the decision maker, they serve as a guide for future development. For example, if the criterion pollution has
a larger weight than that of profit, then more effort will be devoted to pollution control than to profit generation to obtain
a higher rank. Indirect explication refers to obtaining weights from the data. Since the weights must be determined after the
data of each alternative is collected, they are called a posteriori weights. As opposed to direct explication where the weights
are the emphases of experts, the weights of indirect explication represent the emphases of the alternatives being evaluated.
This way of determining weights is more convincing because the weights are a reflection of the data.

E-mail address: ckao@mail.ncku.edu.tw

0307-904X/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.apm.2009.09.022
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Another key factor in MCDA is the determination of a benchmark for comparison. Usually, an ideal alternative is identi-
fied, and alternatives that are closer to the ideal are preferred. Some studies [10-12] have discussed the idea that being far-
ther away from the negative ideal, or anti-ideal, is better, where the negative ideal is the imaginary alternative which has the
smallest value in each criterion. The alternatives are ranked based on their distance to the ideal or anti-ideal. Various ways
for measuring the distance have been defined. Let X = [X;, X5,..., X;;] and Y =[Y3, Y5,.. ., Y;z] denote two points in m-dimen-
sional space. The generalized distance measure between X and Y is [13]:

= 1/p
dy= [Z WP (X; - m"} (1)
i=1

where p represents the distance parameter and w; is the relative importance, represented in weight, of the ith criterion. Usu-
ally, p=2 is used.

For two alternatives with the same distance to the ideal, the one which is farther away from the anti-ideal is considered
better because it is “relatively” closer to the ideal. Similarly, for two alternatives with similar distances to the anti-ideal, the
one which is closer to the ideal is preferred. In this regard, a measure of relative distance which shows the relative position of
an alternative from the anti-ideal to the ideal is desirable. This paper formulates the problem of weight determination using
a compromise programming technique, where the difference between the performances of the alternative and the ideal is
treated as the distance. The rankings of the alternatives are based on the aggregate performance calculated from the set
of weights. One attractive feature of the relative distance measure is that the rankings obtained based on the distance to
the ideal and those obtained based on the distance to the anti-ideal are the same.

The rest of this paper is organized as follows. The data envelopment analysis (DEA) technique for identifying nondomi-
nated alternatives is reviewed in Section 2. Then, the traditional idea of calculating the shortest distance between the ob-
served and the ideal alternatives, yet based on a posteriori weights, is given in Section 3. In Section 4, the idea of
calculating the relative distance for ranking is proposed. An example is used in Section 5 to compare the proposed method
with the TOPSIS method. Finally, in Section 6, some conclusions are drawn.

2. Nondominated alternatives

When more than one criterion is considered, there will usually be several alternatives which are not dominated by the
others; each has at least one criterion which outperforms those of the other alternatives. One of the nondominated alterna-
tives is chosen for implementation. Charnes et al. [14] proposed the DEA technique to calculate the relative efficiency of a
group of decision making units (DMUs) which uses multiple inputs to produce multiple outputs. Each unit is allowed to
use different sets of weights to calculate the efficiency. Those with an efficiency value of 1 are nondominated units, which
are called Pareto optimal or efficient units [14]. The MCDA problem can be considered as a DEA problem without inputs, or as
a problem in which every alternative has the same amount of every input. Hence, the DEA technique can be applied to iden-
tify nondominated alternatives.

Let ¥j; denote the value of the ith criterion, i=1, ..., m, for the jth alternative, j=1, ..., n. The DEA model without inputs
for calculating the efficiency of the kth alternative can be formulated as [15]:

E, =max. Y wY

i=1
m
st ZWiYU{gI j=1....,n
i=1
Wiz g =1

where w; is the importance associated with the ith criterion and ¢ is a small positive quantity imposed to restrict any crite-
rion from being ignored. The most favorable weights are sought for each DMU in calculating its efficiency. This model has a
dual which is exactly the same as the output-oriented BCC model [16] without inputs formulated by Lovell and Pastor [17],
who also proved that the dual model is equivalent to the output-oriented CCR model [14] with a single constant input.

Consider a simple example of five alternatives, A, B, C, D, and E. Their performances in two criteria, Y; and Ys, are shown in
Table 1 and are depicted in Fig. 1. Model (2) identifies B and D as the nondominated alternatives. The piecewise line seg-
ments SBDT present the efficiency frontier constructed from the five alternatives. Alternative E lies on the vertical line ex-
tended downward from the efficient alternative D, and is called weakly efficient [18]. Alternatives A and C lie in the
interior of the area delineated by line segments SBDT and are thus dominated. Their efficiency values, as calculated from
Model (2), are the ratios of OA to OA” and OC to OC, respectively, where A’ and ' are the projections on their respective fron-
tier facets. Column 4 of Table 1, with the heading “DEA efficiency”, shows the efficiency values of the five alternatives. Num-
bers in parentheses are their ranks.

In this case, B and D are the best choices because they are nondominated. However, it is not clear which one is better.
Alternative E is ranked the next best since it is weakly efficient. For the two dominated alternatives, A and C, C is better
due to its higher efficiency value. Geometrically, the calculation of the efficiency value is based on the frontier facet with



C. Kao/Applied Mathematical Modelling 34 (2010) 1779-1787 1781

Table 1
Data and various performance measures for the given example.
Alternative Y: Y, DEA efficiency Absolute distance Relative distance
Ideal Anti-ideal Ideal Anti-ideal
A 2 4 0.8 (5) V2146/130 (5) V2836/130 (5) 40/90 (5) 50/90 (5)
B 4 5 1(1) V225/130 (1) V6625,/130 (2) 11/90 (1) 79/90 (1)
c 4 4 0.92 (4) V346,130 (2) V5536/130 (4) 18/90 (3) 72/90 (3)
D 5 3 1(1) V484/130 (3) VB714/130 (1) 14/90 (2) 76/90 (2)
E 5 2 1-¢(3) V1089/130 (4) v6109/130 (3) 21/90 (4) 69/90 (4)
U
6+ u
B*
A
F S-2==—-—-XB Ok
"
B
4 r A
2
55
L ] D
A I
|
5 b Ef slope= —w;/w;
|
W T W W
0 2 4 6 8
Y,

Fig. 1. Geometric interpretation of the relative performance compared with the ideal, I.

which the alternative is compared. Since the efficiency value is generally determined from different frontier facets, different
weights are applied in calculating the efficiency. Hence, the alternatives should not be ranked simply by their efficiency val-
ues [19,20].

In the next section, we introduce a method for generating a common set of weights, based on which all alternatives are
comparable.

3. Absolute distance

The first task in calculating the distance between an alternative and the ideal or the anti-ideal is to find the ideal and the
anti-ideal. The anti-ideal, which has the smallest value in all criteria, is easier to determine. The origin is the theoretical anti-
ideal because it has a value of zero for every criterion. The ideal, on the other hand, is difficult to identify because not every
criterion has a theoretical ceiling.

Consider again a set of n alternatives with m criteria. The performance of alternative j in criterion i has a value of Yj;. Let
Y = max{Yy,j=1,..., n} denote the largest value that appears in the ith criterion. Then, I = (Y}.Y5,...,Y,,) is empirically
the ideal alternative because it has the best performance in every criterion. For example, the ideal alternative generated from
the five alternatives in Table 1 is I = (5, 5). This derived alternative is the smallest dominating alternative, which will be dom-
inated by any other dominating alternative. A comparison to this smallest dominating alternative will produce the highest
performance value for each alternative. Therefore, it is a convincing ideal for measuring performance.

By the same token, if an empirical, rather than the theoretical, anti-ideal is preferred, then one can define I =
(Y;,Y;,...,Y,) as the anti-ideal, where Y; = min{Y;,j=1...., n} is the smallest value that appears in the ith criterion. This
anti-ideal is the largest anti-ideal dominated by all observed alternatives; any other anti-ideal will be dominated by it.

One of the most popular approaches for ranking alternatives is compromise programming, which is based on the distance
between the alternative and the ideal. Alternatives with a shorter distance to the ideal are considered better than those with
a longer distance. There are several variations of this approach [10,11,21]. Referring to Eq. (1), a weight is usually applied to
the values of each criterion to make all criteria comparable. When no prior information is available, one can use the infor-
mation contained in the observations to generate the weight.
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Consider the example in Table 1. Let w; and w; be the weights of criteria Y; and Y>, respectively. The squared distance
between alternative A =(2, 4) and the ideal I =(5, 5) is (w1 (5 — 2)]* + [wa(5 — 4)* = 9w2 + w2, Calculating the squared dis-
tance for the other four alternatives results in a total squared distance of 11w? + 15w3. For general cases, the total squared
distance from all alternatives is 3}, [33", w?(Y] — Y;:)?]. To exclude the trivial solution of w; = 0,i = 1,....m, one can require
the aggregate performance of the ideal alternative to have a value of 1; that is, 3", w;¥; = 1. Thus, rather than assigning the
weights beforehand, they are obtained by minimizing the total squared distance to the ideal:

min. Z {iwﬁ(y;—yuf}
j=1 Li=1

m
st. 3 w¥i=1
P

wi=zeg i=1,....m

The small quantity € is introduced so that no criterion is ignored.
Model (3} is a quadratic program. Many computer programs can be applied to find a solution. After the optimal weights
w;, 1=1,...,m, are solved, the distance between each alternative and the ideal can be calculated; the ranks of the alterna-

tives can then be determined. Due to its special structure, the optimal solution of Model (3) can be derived from the Kuhn-
Tucker conditions directly. Let / be the Lagrangian multiplier. It is easy to derive:

w,’_[Y,*/zz(Y;—YU)Z}/L i=1,...,m (4)
j-1

where A= 1/ [(Y])? /250 (Y] — Y,-J-)ZJ. Note that w; will always be greater than zero, unless Y; =0. Therefore, the lower
bound constraint w; > & is automatically satisfied. For Y; =0, which means that all alternatives have a value of zero for the ith
criterion, the criterion can be deleted without affecting the evaluation.

Using the data in Table 1 as an example, the associated mathematical program for finding the suitable weights is:

min. 11w} + 15w3
St 5wy 45wy =1 (5)
Wi. Wy = 6.

The optimal weights are w; = 15/130 and w; = 11/130. The ratio of the two weights is w;/w; = 15/11, indicating that the
scale of the first criterion must be enlarged by a factor of 15/11 to make the two criteria comparable. Using this set of
weights, the distance from each alternative to the ideal, 327", w2(Y; - Y;;)*]'?, is calculated as shown in the fifth column
of Table 1. The corresponding ranks appear in parentheses.

Compared with the results of DEA efficiency, the nondominated alternative B is also ranked first with the absolute-dis-
tance approach. The other nondominated alternative D, however, is not the second best; it is ranked third. The weakly effi-
cient alternative E has a rank of 4, instead of 3 as in the DEA-efficiency approach. The fourth ranked alternative, C, jumps up
to a rank of 2. The fifth ranked alternative, A, remains the same. Three of the five alternatives have different ranks, which is
due to every alternative in the DEA-efficiency approach possible using different sets of weights for comparison, while the
absolute-distance approach requires all alternatives to use the same set of weights. According to Cooper and Tone [19]
and Adler et al. [20], results from different sets of weights are not suitable for ranking.

In compromise programming, alternatives are ranked according to their distance to the ideal or to the anti-ideal. The
alternative which is closest to the ideal need not be the same as that farthest away from the anti-ideal. In this example,
the origin is the theoretical anti-ideal alternative because it has the smallest value in both criteria. Using the weights of
w; = 15/130 and w; = 11/130 obtained from Model (3), the distances to the anti-ideal for the five alternatives are
v2836/130, v6625/130, v5536/130, v6714/130, and v6109/130, respectively. The corresponding ranks are 5, 2, 4, 1,
and 3, respectively, as shown in the sixth column of Table 1. Except alternative A, the worst one, all alternatives have ranks
different from those obtained from the distance to the ideal. Interestingly, the rankings are the same as those of the DEA-
efficiency approach. However, this is only a coincidence.

The reason for obtaining different rankings is simply that the absolute-distance approach only considers the distance to
the ideal, disregarding the distance to the origin. If one can find a distance measure which takes both the ideal and anti-ideal
into consideration, then consistent rankings may be obtained. In the next section, we introduce a measure which represents
the relative position of an alternative from the origin to the ideal.

4. Relative distance

In the preceding section, it was illustrated that in calculating the aggregate performance of an alternative, one should look
at the distance to the ideal relative to the total distance from the origin, passing through the alternative, to the ideal, rather
than merely using the absolute distance to the ideal. Chen and Hwang [22] took this into account in devising a method
named TOPSIS. However, their method does not guarantee the result from the criterion closest to the ideal and the result
from that farthest away from the anti-ideal to be the same, as pointed out by Opricovic and Tzeng [21].
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The aggregate performance of any alternative is worse than that of the ideal, no matter what weights are applied to indi-
vidual criteria. Thus, we have P; = 57" wiY;/S1" ,wiY] < 1, where P, is the aggregate performance of the jth alternative rel-
ative to the ideal. The ideal alternative has a relative performance value of 1: P* =57 wiY;/S_0 wiY; = 1. If we let

. w;Y;, which is the aggregate performance of the ideal alternative, be equal to 1 to standardize the weights w;, then
>l w Y becomes the relative performance of the jth alternative. The difference between P; and 1, denoted by s, is the rel-
ative distance between the jth alternative and the ideal in terms of the aggregate performance. It is also the complementary
performance of this alternative. The problem is then transformed to finding the set of weights w;,i=1, ..., m, which produce
the smallest total squared difference between the relative performance of the alternative and that of the ideal. The associated
model is:

Note that the distance variable s; is always positive because every alternative Y; is dominated by the ideal I=Y", After the
optimal weights w;, i=1,..., m, are obtained, the relative performance of the jth alternative is calculated as YWYy
The relative distance to the 1deal isst=1-31,wY;

Comparing Model (6) with the conventional DEA model without inputs, i.e., Model (2), it is noted that the constraints of
the two models are essentially the same, except that Model (6) has an extra constraint associated with the ideal alternative.
In the context of DEA, the ideal alternative is also included to construct the production frontier. The difference between the
two models is the objective function; Model (2) maximizes the aggregate performance of each specific alternative in each
calculation, while Model (6) minimizes the total squared complementary performance, or the total squared relative distance
to the ideal, of all alternatives in one calculation. The weights used by each alternative in calculating the aggregate perfor-
mance can be different in Model (2); they are the same in Model (6). They are the general consensus of the alternatives being
evaluated. The same set of weights provides a common base for comparing different alternatives.

Geometrically, the frontier constructed by Model (2) is a set of connected facets, while that constructed by Model (6) is a
single-facet hyperplane, > ", w;Y; = 1, passing through the ideal. Note that here wy’s in 3., w;Y; = 1 are constants and Y;'s
are coordinates. Model (6) can be considered as a common-weight DEA model [23]. The hyperplane 31", w;Y; = 1 — s;, which
passes through alternative j, is parallel to the frontier > ", w;¥; = 1, with a distance of s;. Since s; represents the relative
position of alternative j from the origin to its projection on the frontier, it is a relative distance measure. Substituting s; in
the objective function of Model (6) by (1 — 3™, w;Yy), or (320, wiY; — S°7, w;Yyy), from the constraints and omitting the first
set of constraints, Model (6) can be simplified to:

i Z[Zw, Y“r
s.t. ;w,-Y;:l

The relative distance to the ideal, 31", wi(Y; — Yy), is the basis for ranking.

The aggregate performance, 3", w;Yy;, represents the relative distance of alternative j to the origin. Larger values imply a
location farther away from the anti-ideal. Since ", w;Y;; is the complement of s;, as is clear from the first set of constraints
in Model (6), the alternative with the smallest distance to the ideal, s;, obviously has the largest distance to the anti-ideal,
S, wiYy. Hence, the relative distances of an alternative to the ideal and to the anti-ideal produce the same rankings.

The consistent rankings hold not only for the weights obtained from the proposed method, but also for any other set of
weights which satisfies the condition of 3", w;Y; = 1. Let w;, i=1, ..., m, be any set of weights such that 5" w;Y; = 1. For
any pair of alternatives j and k, suppose that the former has a smaller relative distance to the ideal than does the latter,
S; < 5. In other words, alternative j is ranked higher than alternative k. Then, we have 3" wY;=1-5>1-5, =

. W;Y.. That is, alternative j has a larger relative distance to the anti-ideal than does alternative k. The former is still
ranked higher than the latter in terms of the distance to the anti-ideal.

For cases where the origin is not suitable to be the anti-ideal, and the empirical anti-ideal, I" = (Y7,Y5,...,Y,,), is
preferred, then P;, the aggregate performance of the jth alternative relative to the ideal, can be adjusted by the aggregate
performance of the anti-ideal as: P; = 317, wy(Yy; — Y7 )/>. %, wi(Y] — Y, ). The geometric meaning is a translation of the origin
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to I". In this case, the adjusted performance of the ideal, " ,wi(Y; — Y;), is set to 1 to standardize the weight w;
Furthermore, since the scale of ¥j; could be very large or very small, which would make the lower bound & in w; > ¢ difficult
to determine, a relative bound, w;(Y; — Y; ) = b, which requires the contribution of each criterion to the aggregate perfor-
mance to be greater than a proportion b, is recommended. The corresponding model becomes:

It is easy to prove that, with this adjustment, the obtained weights produce the same rankings for the criterion of “closer to
the ideal is better” and that of “farther away from the anti-ideal is better".
Following Model (7), the mathematical program for calculating the optimal weights for the five alternatives in Table 1 is:

min. 3wy +w,)? + (w1)? + (wy +wa)? + (2w,)? + (3w)?
s.t. 5wy +5wy =1 (9)
Wi Wy = &

By solving the Kuhn-Tucker conditions, the optimal weights are obtained as w; = 11/90 and w3, = 7/90. The frontier for cal-
culating the aggregate performance of each alternative is a straight line, (11/90)Y; +(7/90)Y> = 1, passing through the ideal
with a slope of —w;/w, = —11/7. The relative distance to the ideal for alternative j, sj, is the ratio of the distance between the
alternative and its projection on the frontier to the distance between the origin and the projection point on the frontier. Its
complement, 1 —s; = 3", w; Yy, is the relative distance to the anti-ideal, which is also the relative performance value of this
alternative. The last two columns of Table 1 show the relative distances of the five alternatives to the ideal and anti-ideal,
respectively, with their ranks parenthesized. As expected, the rankings based on these two distance measures are exactly the
same.

In Fig. 1, every alternative is compared with its projection on the frontier, UW, in calculating the aggregate performance.
For example, the performance value of B is the ratio of OB to OB", where B” is the projection of B on the frontier. BB*/OB" is the
relative distance to the ideal and OB/OB" is the relative distance to the anti-ideal. Let U'W" be a straight line passing through B
and parallel to the frontier UW. This line is represented by (11/90)Y; + (7/90)Y; = 1 — sp. Suppose that the line connecting the
origin and the ideal point intersects line U'W" at B%. It can be shown that OB/OB*=0B"/0I. Since the length of OI has been
rescaled to 1, OB/OB" is equal to the length of OB, or w; Y + w,Y,5 which is the aggregate performance of B. Thus, compar-
ing an alternative with the ideal is equivalent to comparing it with its projection on the frontier. Similarly, one can draw a
parallel line U"W", (11/90)Y; +(7/90)Y2 =1 — s,, for alternative A, which intersects line OI at A°. The length of 0A°® is the
aggregate performance of alternative A, with a value of w; Y1, + w2Y2,. For the general case of n alternatives, n parallel hyper-
planes are constructed; each has a distance of s; to the frontier. The alternative with the shortest distance to the frontier has
the highest rank.

For a set of weights w;, i=1,..., m, “S7", WY = 17 represents a hyperplane passing through the ideal I. Following the
above discussion, the relative performance of an alternative is equal to the ratio of the distance between the origin and
the alternative to that between the origin and the projection of the alternative on the hyperplane. This value is equal to
1 —s; the complement of the distance between the parallel hyperplanes passing through the alternative and the ideal.
Therefore, this set of weights produces the same rankings for the criteria of “closer to the ideal is better” and “farther away
from the anti-ideal is better”.

Another point which can be inferred from Fig. 1 is that criteria with larger variances obtain larger weights in the proposed
method. Consider an extreme case that all alternatives are almost vertically scattered along the line of Y; = 5. In other words,
all alternatives have similar values in Y; but different values in Y-. Then, the frontier constructed from these alternatives will
be an almost vertical line to the right of all alternatives with a slope approaching negative infinity. In this case, the weight of
Y, wy, approaches zero and the weight of Ys, w,, is a relatively large number. Thus, the contribution of Y; to the aggregate
performance is negligible. This property coincides with a concept in MCDA that states that criteria with similar values for all
alternatives are judged less important as they do not help in making a decision [10].

5. A comparison with TOPSIS

The method proposed in this paper uses an idea similar to that used in TOPSIS (technique for order preference by simi-
larity to an ideal solution) [11]. This method has several variations [24,25]; however, the basic idea is the same. The proce-
dure can be categorized into five steps.
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(1) Data standardization: ry = Yy/\/ > e, i=1,..,m j=1..,n

(2) Data weighting: v;;=wry; where 3" w; = 1.

(3) Ideal and anti-ideal determination: I= (v;,....vy,) and I = (v7,...,v,), where »; =max{v;j=1....,n} and
v; =min{v;,j=1....,n} for desirable criteria and #} = min{z;.j=1,....n} and v7 = max{vy.j=1,...,n} for
undesirable criteria.

(4) Distance calculation: s; = (v — vy)* and 57 =
(5) Ranking: ¢; =s; /(s; +5;).j=1,....n.

There are several differences between TOPSIS and the method proposed in this paper.

First, the data in TOPSIS is standardized to eliminate the difference in scale of each criterion, while in the proposed meth-
od the scales are adjusted automatically by the weights associated with the criteria. Second, the weights in TOPSIS are spec-
ified beforehand and sum to one, while in the proposed method they are determined by the data and are not required to sum
to one. Finally, and most importantly, the sum of the distances of each alternative to the ideal, s;, and to the anti-ideal, s; , is
not the same for all alternatives for TOPSIS. Therefore, the rankings based on s, s; , or ¢;, the relative position of an alternative
between the ideal and anti-ideal, may not be the same. In contrast, the distances to the ideal and anti-ideal for each alter-
native in the proposed method always sum to one. Consequently, the rankings based on the two distance measures are the
same.

Consider an example that appeared in Jacquet-Lagréze and Siskos [8]. Ten cars are to be ranked by six criteria: maximum
speed (km), horse power (cv), space (m?), gas consumption in town (It/100 km), gas consumption at 120 km/h (1t/100 km),
and price (francs), where the first three are desirable criteria and the last three are undesirable ones. Table 2 shows the data.
By applying Model (8), the distance to the anti-ideal, >}" ,w;(Y;; — ¥, ), and the distance to the ideal, s;, are calculated for each
alternative. The results are shown in the second and third columns of Table 3, where numbers in parentheses are the cor-
responding ranks. As expected, the rankings from the two distance measures are the same. Note that the ideal and anti-ideal
for an undesirable criterion are the minimal and maximal observations, respectively, in all alternatives. Hence, (Y; — Y; ) and
(Y; =Y, ) for the last three criteria in Model (8) must be replaced by absolute values to maintain the correct relationship. Let
b in Model (8) be 0.01; the weights obtained for w;, i=1,...,6, are 0.009763, 0.001, 0.002976, 0.00137, 0.001613, and
0.006393, respectively. Since the scales of the criteria are different, these weights do not necessarily represent the impor-
tance of the criteria; they must be adjusted.

The contribution of each criterion to the aggregate performance of the ideal is wi(Y; — Y ), which sum to one for all cri-
teria. Therefore, w;(Y; — Y;) can be considered as the importance of criterion i. The values are 0.6346, 0.01, 0.01, 0.01, 0.01,

Table 2

Data for ten cars with six criteria [8].
No. Maximum speed Horse power Space Gas consumption Gas consumption Price

(km) (CV) (m?) in town (1t/100 km) at 120 km/h (I1t/100 km) (1000 francs)

1 173 10 7.88 114 10.01 49.5
2 176 11 7.96 123 10.48 46.7
3 142 5 5.65 8.2 7.30 321
4 148 7 6.15 10.5 9.61 39.15
5 178 13 8.06 14.5 11.05 64.7
6 180 13 8.47 13.6 10.40 75.7
7 182 11 7.81 12.7 12.26 68.593
8 145 11 8.38 14.3 12.95 55.0
9 161 7 5.11 8.6 8.42 35.2
10 117 3 5.81 7.2 6.75 24.8

Table 3

Rankings for the car example from the proposed method and TOPSIS,
No. Proposed method TOPSIS

5; 1-5 5 En o

1 0.2615 (2) 0.7385 (2) 0.0505 (3) 0.0870 (5) 0.6329 (4)
2 0.2151 (1) 0.7849 (1) 0.0443 (2) 0.0934 (3) 0.6783 (2)
3 0.4558 (8) 0.5442 (8) 0.0519 (5) 0.0922 (4) 0.6401 (3)
4 0.4457 (7) 0.5543 (7) 0.0511 (4) 0.0824 (6) 0.6173 (5)
5 0.3123 (5) 0.6877 (5) 0.0797 (7) 0.0790 (8) 0.4979 (7)
6 0.3596 (6) 0.6404 (6) 0.1014 (10) 0.0784 (9) 0.4359 (9)
7 0.3004 (4) 0.6996 (4) 0.0873 (9) 0.0821 (7) 0.4847 (8)
8 0.5763 (9) 0.4237 (9) 0.0758 (6) 0.0541 (10) 0.4164 (10)
] 0.2921 (3) 0.7079 (3) 0.0334 (1) 0.0975 (2) 0.7447 (1)
10 0.6525 (10) 0.3475 (10) 0.0808 (8) 0.1014 (1) 0.5564 (6)
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and 0.3254 for the six criteria, respectively. These numbers indicate that the first criterion, maximum speed, is the most
important, that the last criterion, price, is the second most important, and that the others are equally unimportant for gen-
erating the most favorable aggregate performance for all alternatives in a compromise sense. The standard deviations of the
six criteria are 21.54, 3.41, 1.29, 2.62, 1.99, and 16.81, respectively. The first criterion has the largest value, followed by the
last. All the others have significantly smaller values. This explains why the first criterion generates the largest weight, the last
criterion generates the second largest weight, and all other criteria generate very small weights from Model (8).

In applying TOPSIS to rank the ten alternatives, the weights 0.6346, 0.01, 0.01, 0.01, 0.01, and 0.3254 are used in the sec-
ond step, data weighting. The results of ranking are shown in the last three columns of Table 3. Clearly, the rankings from the
criterion of “closer to the ideal is better” are different from those of “farther away from the anti-ideal is better”. The largest
difference occurs at alternative 10, where the former ranked it eighth while the latter ranked it first. The final ranking, as
shown in the last column, are a compromise of these two types of rankings. The best is alternative 9, which was ranked first
by the former criterion and second by the latter criterion.

The final rankings from TOPSIS are also different from those of the proposed method. The proposed method ranked alter-
native 2 the best while TOPSIS ranked it second. In contrast, TOPSIS ranked alternative 9 the best while the proposed method
ranked it third. From the viewpoint of identifying the best alternative, the difference between these two methods, in this
example, is not much.

Different methods usually lead to different results. It is inappropriate to say which method is better because every meth-
od has a different underlying theory or assertion. However, some methods are more suitable than others for certain cases.
The proposed method uses observations to generate weights; no pre-specified weights are required. Furthermore, the pro-
posed method produces the same rankings for the criteria of “closer to the ideal is better” and “farther away from the anti-
ideal is better”. From this point of view, the proposed method is suitable for, at least, two cases. First, when the weights of the
criteria are difficult to determine due to either insufficient prior information or contradictory expert opinions. Second, when
the decision maker is not sure whether an alternative with maximum aggregate performance, i.e., farther away from the
anti-ideal, or with minimum regret, i.e., closer to the ideal, is better.

Since the weights of the proposed method are generated from the data, undesirable data may produce undesirable results.
For example, suppose that most factories, except one or two, are producing a lot of pollution. The weight generated for the
criterion pollution will be relatively small, giving most factories a favarable evaluation. This is definitely not correct. There-
fore, whenever a priori weights are available, the weights should not be generated from the data. Instead, the a priori weights
should be used. As discussed in Section 4, the a priori weights W;.i =1, ..., m, can still be used in the proposed method to
produce consistent rankings.

6. Conclusion

How to compare various alternatives in MCDA is always controversial due to the incomparability of criteria. There are two
types of weight acquired for representing the importance of each criterion: a priori weights determined by experts and a pos-
teriori weights obtained from the data. This paper adopted the a posteriori approach. The general idea is to find a set of
weights which produces the aggregate performance for all alternatives to be as close to the ideal as possible. The problem
was formulated as a compromise program. After the weights are obtained, the aggregate performance of each alternative is
calculated for ranking.

The major finding of this paper is that the conventional idea of seeking the shortest absolute distance between the alter-
native and the ideal may produce results which are different from those obtained by seeking the longest absolute distance be-
tween the alternative and the anti-ideal. When the measure of distance is changed from absolute to relative, thatis, the relative
position of the alternative between the anti-ideal and the ideal, then the resultant rankings from the two ideas are consistent. It
was also shown that the relative distance produces consistent rankings for any set of weights, no matter how they are deter-
mined. Although the TOPSIS method also calculates the relative distance of each alternative between the ideal and anti-ideal,
the results from the criteria “closer to the ideal is better” and “farther away from the anti-ideal is better” are not necessarily the
same because the sum of the distances of an alternative to the ideal and to the anti-ideal is not constant for all alternatives.

The proposed method has several other advantages. One is that criteria with similar values for all alternatives generate
smaller weights. This is in accord with a concept in MCDA that states that criterion with similar values for all alternatives are
less helpful in making a decision. Another advantage which is common to all a posteriori weight approaches is that pre-deter-
mined weights are not required. Hence, it is suitable for cases where no prior information can be used for determining the
weights.

Finally, since the weights used for calculating the aggregate performance for the alternatives are the most favorable for all
alternatives in a compromise sense, the resultant rankings are convincing. Moreover, the weights are not subjectively deter-
mined by humans, which sometimes creates controversy; hence, the results are more acceptable when the alternatives are
people or organizations.
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